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Abstract

Previous analysis has shown that applying Bayes minimum

risk to detect credit card fraud leads to better results

measured by monetary savings, as compared with traditional

methodologies. Nevertheless, this approach requires good

probability estimates that not only separate well between

positive and negative examples, but also assess the real

probability of the event. Unfortunately, not all classification

algorithms satisfy this restriction. In this paper, two

different methods for calibrating probabilities are evaluated

and analyzed in the context of credit card fraud detection,

with the objective of finding the model that minimizes the

real losses due to fraud. Even though under-sampling is

often used in the context of classification with unbalanced

datasets, it is shown that when probabilistic models are

used to make decisions based on minimizing risk, using

the full dataset provides significantly better results. In

order to test the algorithms, a real dataset provided by

a large European card processing company is used. It

is shown that by calibrating the probabilities and then

using Bayes minimum Risk the losses due to fraud are

reduced. Furthermore, because of the good overall results,

the aforementioned card processing company is currently

incorporating the methodology proposed in this paper into

their fraud detection system. Finally, the methodology

has been tested on a different application, namely, direct

marketing.

1 Introduction

Every year billions of Euros are lost in Europe due to
credit card fraud [6]. This leads financial institutions to
continuously seek better ways to prevent fraud. Never-
theless, fraudsters constantly change their strategies to
avoid being detected, something that makes traditional
fraud detection tools such as expert rules inadequate.
Different detection systems that are based on machine
learning techniques have been successfully used for this
problem, in particular: neural networks [12], Bayesian

∗This work was supported by the Fonds National de la
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learning [12], support vector machines [2] and random
forest [4].

Credit card fraud detection is by definition a cost
sensitive problem, since the cost of failing to detect a
fraud is significantly different from the one when a false
alert is made [5]. In [8] a cost sensitive approach is pro-
posed by assuming a constant cost difference between
false positives and false negatives. Nevertheless, this is
not the case in credit card fraud detection, because in
practice the false negative cost is example dependent.
In a recent study [4], a decision theory approach by
applying Bayes minimum risk (BMR) to predict when-
ever a transaction was legitimate or fraud, has been
used. Their approach leads to a reduction in the cost
due to credit card fraud. Nevertheless, the BMR ap-
proach requires good calibrated probabilities in order to
correctly estimate the individual transactions expected
costs. As mentioned by Cohen and Goldszmidt [3], cal-
ibrated probabilities are crucial for decision making
tasks.

In this paper two different methods for calibrating
probabilities are evaluated and analyzed in the context
of credit card fraud detection, with the objective of
finding the model that minimizes the real losses due to
fraud. First, the method proposed in [5] to adjust the
probabilities based on the difference in bad rates be-
tween the training and testing datasets is used. Second,
it is compared against the method proposed in [9], in
which calibrated probabilities are extracted after modi-
fying the receiver operating characteristic (ROC) curve
to a convex one using the ROC convex hull methodol-
ogy.

For this paper a real credit card fraud dataset is
used. The dataset is provided by a large European card
processing company, with information of legitimate and
fraudulent transactions between January 2012 and June
2013. The outcome of this paper is being currently used
to implement a state-of-the-art fraud detection system,
that will help to combat fraud once the implementation
stage is finished.

Finally, with the objective of evaluating the consis-
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(a) Set of probabilities and
their respective class label

(b) ROC curve of the set of probabilities

(c) Convex hull of the ROC curve
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0.3 0.333
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0.5 0.5
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0.7 0.666
0.8 0.666
0.9 1
1.0 1

(d) Calibrated probabilities

Figure 1: Estimation of calibrated probabilities using the ROC convex hull [9].

tency of the results across different applications, and to
allow the reproduction of the results, a publicly available
dataset is used. In particular, a dataset of direct mar-
keting, that contains information of bank clients that
receive cross-sell offers of long-term deposits.

The remainder of the paper is organized as follows.
In Section 2, the methods for calibrating probabilities
are explained. Afterwards, the experimental setup
is given in Section 3. Here the dataset, evaluation
measures and algorithms are presented. Then the
results are presented in Section 4. Subsequently, the
methodology is evaluated on a different dataset. Finally,
conclusions of the paper are given in Section 6.

2 Calibration of probabilities

When using the output of a binary classifier as a basis
for decision making, there is a need for a probability that

not only separates well between positive and negative
examples, but that also assesses the real probability of
the event [3].

In this section two methods for calibrating proba-
bilities are explained. First, the method proposed in [6]
to adjust the probabilities based on the difference in bad
rates between the training and testing datasets. Then,
the method proposed in [8], in which calibrated prob-
abilities are extracted after modifying the ROC curve
using the ROC convex hull methodology, is described.

2.1 Calibration of probabilities due to a change
in base rates. One of the reasons why a probability
may not be calibrated is because the algorithm is trained
using a dataset with a different base rate than the one
on the evaluation dataset. This is something common
in machine learning since using under-sampling or over-
sampling is a typical method to solve problems such as
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class imbalance and cost sensitivity [10].
In order to solve this and find probabilities that are

calibrated, in [5] a formula that corrects the probabili-
ties based on the difference of the base rates is proposed.
The objective is using p = P (j = 1|x) which was esti-
mated using a population with base rate b = P (j = 1),
to find p′ = P ′(j = 1|x) for the real population which
has a base rate b′. A solution for p′ is given as follows:

p′ = b′
p− pb

b− bp + b′p− bb′
.(2.1)

Nevertheless, a strong assumption is made
by taking: P ′(x|j = 1) = P (x|j = 1) and
P ′(x|j = 0) = P (x|j = 0), meaning that there is
no change in the example probability within the
positive and negative subpopulations density functions.

2.2 Calibrated probabilities using ROC convex
hull. In order to illustrate the ROC convex hull ap-
proach proposed in [9], let us consider the set of prob-
abilities given in Figure 1a. Their corresponding ROC
curve of that set of probabilities is shown in Figure 1b.
It can be seen that this set of probabilities is not cali-
brated, since at 0.1 there is a positive example followed
by 2 negative examples. That inconsistency is repre-
sented in the ROC curve as a non convex segment over
the curve.

In order to obtain a set of calibrated probabilities,
first the ROC curve must be modified in order to be
convex. The way to do that, is to find the convex
hull [9], in order to obtain the minimal convex set
containing the different points of the ROC curve. In
Figure 1c, the convex hull algorithm is applied to the
previously evaluated ROC curve. It is shown that the
new curve is convex, and includes all the points of the
previous ROC curve.

Now that there is a new convex ROC curve or
ROCCH, the calibrated probabilities can be extracted
as shown in Figure 1d. The procedure to extract
the new probabilities is to first group the probabilities
according to the points in the ROCCH curve, and then
make the calibrated probabilities be the slope of the
ROCCH for each group.

3 Experimental setup

In this section, first the dataset used for the experiments
is described. Afterwards the measure used for evalua-
tion is explained. Lastly the partitioning of the dataset
and the algorithms used to detect fraud are shown.

3.1 Database. In this paper a dataset provided by a
large European card processing company is used. The
dataset consists of fraudulent and legitimate transac-

tions made with credit and debit cards between Jan-
uary 2012 and June 2013. The total dataset contains
120,000,000 individual transactions, each one with 27
attributes, including a fraud label indicating whenever
a transaction is identified as fraud. This label was cre-
ated internally in the card processing company, and can
be regarded as highly accurate. In the dataset only
40,000 transactions were labeled as fraud, leading to a
fraud ratio of 0.025%.

From the initial attributes, an additional 260 at-
tributes are derived using the methodology proposed in
[2] and [15]. The idea behind the derived attributes
consists in using a transaction aggregation strategy in
order to capture consumer spending behavior in the re-
cent past. The derivation of the attributes consists in
grouping the transactions made during the last given
number of hours, first by card or account number, then
by transaction type, merchant group, country or other,
followed by calculating the number of transactions or
the total amount spent on those transactions.

For the experiments, a smaller subset of transac-
tions with a higher fraud ratio, corresponding to a spe-
cific group of transactions, is selected. This dataset con-
tains 1,638,772 transactions and a fraud ratio of 0.21%.
In this dataset, the total financial losses due to fraud
are 860,448 Euros. This dataset was selected because it
is the one where most frauds are being made.

3.2 Evaluation measure. In order to evaluate the
classification algorithm, a cost matrix similar to the one
proposed in [5] is used. The cost matrix is shown in
Table 1. This matrix differentiates between the costs of
the different outcomes of the classification algorithm,
meaning that it differentiates between false positives
and false negatives, and also the different costs of each
example. Other cost matrices have been proposed
for credit card fraud detection, but none differentiates
between the costs of individual transactions, see [8].

Using the cost matrix it is easy to extract a cost
measure as the sum of all individual costs:

m∑
i=1

yi (piCa + (1− pi)Amti) + (1− yi)piCa.(3.2)

This measure evaluates the sum of the cost for m
transactions, where yi and pi are the real and predicted
labels, respectively.

3.3 Database partitioning. From the total
dataset, 3 different datasets are extracted: train,
validation and test. Each one containing 50%, 25%
and 25% of the transactions respectively. Afterwards,
because classification algorithms suffer when the label
distribution is skewed towards one of the classes [10],
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Table 1: Cost matrix using real financial costs

True Class (yi)
Fraud Legitimate

Predicted Fraud Ca Ca

Class (pi) Legitimate Amti 0

Table 2: Description of datasets

Database Transactions Frauds Losses
Total 1,638,772 0.21% 860,448
Train 815,368 0.21% 416,369

Under-sampled 3,475 49.93% 416,369
Validation 412,137 0.22% 238,537

Test 411,267 0.21% 205,542

an under-sampling of the legitimate transactions is
made, in order to have a balanced class distribution.
The under-sampling has proved to be the better
approach for such problems, see [10]. A new training
dataset containing a balanced number of frauds and
legitimate transactions is created. Table 2, summarizes
the different datasets. It is important to note that
the under-sampling procedure was only applied to the
training dataset since the validation and test datasets
must reflect the real fraud distribution.

3.4 Algorithms. For the experiments a BMR
method using the probabilities of a random forest (RF)
algorithm is used. The RF is trained using the under-
sampled and training datasets, to be able to observe the
effect of different positive base rates on the probabilities
and the BMR. The RF algorithm is trained using the
implementation of Scikit-learn [14]. In order to have a
good range of probability estimates, the parameters of
the RF are tuned. Specifically, 500 not pruned decision
trees with Gini criterion for measuring the quality of a
split were created. As a benchmark Logistic Regression
(LR) and Decision Tree (DT) are also used in conjunc-
tion with BMR.

After the probability estimates are calculated, the
BMR method using the cost matrix described in Table 1
is applied in order to predict whenever a transaction is
legitimate or fraud. As defined in [11], the Bayes min-
imum risk classifier is a decision model based on quan-
tifying tradeoffs between various decisions using proba-
bilities and the costs that accompany such decisions. In
the case of credit card fraud detection, a transaction is
classified as fraud if the following condition holds true:

CaP (pf |x) + CaP (pl|x) ≤ AmtiP (pf |x),(3.3)

and as legitimate if false. Where P (pl|x) is the es-
timated probability of a transaction being legitimate

given x, similarly P (pf |x) is the probability of a trans-
action being fraud given x. Lastly, Amti is the amount
of the transaction i. An extensive description of the
methodology can be found in [4].

Finally, two new models are evaluated by calibrat-
ing the probabilities using the methods described in
Section 2, and afterwards applying BMR with the cali-
brated probabilities. This procedure of probability cali-
bration is made on the validation dataset and evaluated
as all other methods on the test dataset.

4 Results

First a RF using the under-sampled (RF-u) and the
training datasets (RF-t) are calculated and then eval-
uated using the test dataset. Additionally to the cost
measure, traditional evaluation measures such as Brier
score, precision (pre), recall (rec) and F1-Score are com-
pared. For the calculation of the cost, the parameter Ca

is estimated to be 10 Euros. This parameter has been
set with the help of the card processing company in-
ternal risk team. Results are shown in Table 4. The
first important thing to note, is that when using RF-
u the cost is higher than the total amount lost due to
fraud in the test dataset, which is 205,542 Euros. The
reason for that is the low precision that translates in a
high false positive rate, which is very expensive since
many accounts should be analyzed before a fraud is de-
tected. On the other hand, when using the full training
dataset, a lower detection of frauds is made but with
a higher precision. Nevertheless, the savings are only
8.45%, which leaves space for improvement. Also, there
is a significant difference between the Brier score of both
models. The reason is that by applying under-sampling
the RF-u is trained using a dataset with a different base
rate than the test dataset, i.e., P (pf ) 6= P ′(pf ). This
leads to having probabilities that are not calibrated, and
therefore not suitable for decision making tasks [3].

In order to find a better result, the BMR model is
used. This model first uses the probabilities estimated
by the RF-u and the RF-t, and afterwards predicts
whenever a transaction is fraud or legitimate using
equation (3.3). When this methodology is used with
RF-u in the performance is much worse than the RF-u,
and the reason is that the probabilities of the RF-u are
not calibrated. On the other hand, when the BMR is
applied to the RF-t, there is an increase in the detection
of frauds, while maintaining a relatively good precision.
This leads to savings of 41.7%, a significant increase
compared to using only the RF-t algorithm.

Afterwards, in order to see how well the probabili-
ties are calibrated, they are compared against the actual
fraud rate P (pf ) for each value of the estimated proba-
bility. As can be seen on Figure 2a, the RF-u is far away
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(a) Comparison of the RF trained with the under-
sampled and full training datasets.

(b) Comparison of the calibration of probabilities
methods.

Figure 2: Comparison between the estimated probability and the actual fraud rate of the different models. It
is shown that the initial probabilities are neither calibrated or monotonic. On one hand, using the RF-u, there
is no relation between estimated probabilities and the actual fraud rate, and also on the RF-t the relation is
not monotonically increasing as expected. However, when the method for calibrating the probabilities using the
ROCCH is used, the extracted probabilities are closer to the base line. In the case of the calibration method by
adjusting for the difference in the base rates, the new probabilities are not as close to the base line.

from being calibrated since there is a strong difference
between the predicted probability and the real fraud dis-
tribution. However, the RF-t model looks better since
it is closer to the base line, which is also reflected by
a lower Brier score. Nevertheless, there are some seg-
ments in which when the estimated probability is higher
than actual fraud rate.

Subsequently, in order to obtain calibrated prob-
abilities the methods described in Section 2 are used.
First, new probabilities are extracted by apply-
ing equation (2.1) using the under-sampled dataset
(RF-u-cal br). Then, the method for calibration us-
ing the ROCCH is implemented using the probabilities
of the model trained with the under-sampled dataset
(RF-u-cal ROCCH) and the one with the full train-
ing dataset (RF-t-cal ROCCH). On Figure 2b, the
new probabilities are shown. It can be seen that
the method of calibration based on the ROCCH per-
forms better since the probabilities RF-u-cal ROCCH
and RF-t-cal ROCCH are much closer to the base line,
and do not have the non-monotonic steps that the
RF-u and RF-t probabilities have. This can also be
seen on the ROC curves of the probabilities, since as
mentioned before, non-monotonic steps in the proba-
bilities are related to non convex segments across the
ROC curve. In Figure 3a, the ROC curve of RF-u and
RF-u-cal ROCCH are shown. As can be seen in detail
in Figure 3b, the RF-u-cal ROCCH fixes those segments
across the ROC curve that where not convex.

Table 3: Brier score of the different probabilities

Algorithm Brier score
RF-u 0.07957046
RF-u-cal br 0.00217812
RF-u-cal ROCCH 0.00189893
RF-t 0.00167922
RF-t-cal ROCCH 0.00167826

Furthermore, as can be seen on Table 3, the impact
of calibrating the probabilities of the under-sampled
model is demonstrated by an important difference be-
tween the Brier score of the RF-u and the calibrated
models. However, there is neither a significant dif-
ference between RF-u-cal br and RF-u-cal ROCCH, or
RF-t and RF-t-cal ROCCH. The reason for this is that
the Brier score is weighted by the population, and as
can be seen on Figure 4, 99.5% of the population have
a probability of fraud lower than 0.05, measured using
RF-t-cal ROCCH, which is expected due to the low per-
centage of frauds in the dataset. More interesting is that
99.5% of the losses due to fraud have a fraud probabil-
ity lower than 0.15, which means that the losses do not
have the same distribution as the population. Previous
attempts have been made to include the cost sensitivity
on the Brier score [7]. Nevertheless, they assume that
the cost does not depend on the example but only on
the class, which as previously explained is not the case
in credit card fraud detection.
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(a) ROC curve of RF-u and RF-u-cal ROCCH (b) Zoom of the ROC curve

Figure 3: The ROC curves of the RF-u and RF-u-cal ROCCH are shown. It can be seen that for the
RF-u-cal ROCCH all segments across the ROC curve that where not convex previously become convex.

Figure 4: Cumulative distribution of the population and
the losses versus RF-t-cal ROCCH. It is shown that the
population does not have the same distribution as the
losses, which means that the losses are concentrated on
higher probabilities of fraud.

Subsequently, using the calibrated probabilities es-
timated using the cal br and cal ROCCH methods, a
BMR classifier is estimated for each one. Results of ap-
plying these algorithms are shown on Table 4. It can
be seen that the Bayes minimum risk using the cali-
brated probabilities by the cal ROCCH method and the
RF-t algorithm outperforms the other models measured
by cost, leading to savings of 89,362 Euros or 43.5% of
the losses on the test dataset. Nevertheless, the differ-
ence of results when applying cal ROCCH-BMR whit
RF-t is not as significant as when the method is applied
with RF-t. The reason is that the calibration method in
the first case is solving both the convexity of the ROC
curve and the fact that P (pf ) 6= P ′(pf ). In the sec-
ond case there is no under-sampling (P (pf ) = P ′(pf )),

which leads to the conclusion that the effect due to
using different base distributions is much more impor-
tant than the one due to the lack of monotonicity of
the probabilities. Lastly, between the two calibration
methodologies, cal ROCCH-BMR gives better results,
which confirms the previously stated conclusion, since
cal ROCCH-BMR is fixing the problems due to differ-
ent class distributions and non-monotonicity of proba-
bilities, but cal br-BMR only the first one.

Finally, the methods are also tested using different
models, in particular DT and LR. After performing the
same procedure as with RF, the cost of the different
algorithms is calculated. In Table 4, the results are
shown. The cal ROCCH-BMR is consistently the best
model measured by cost, independently of which model
is used to estimate the probabilities. Nevertheless, in
the case of LR, the LR-u-cal ROCCH-BMR is slightly
better than LR-t-cal ROCCH-BMR, which may suggest
that for LR it is more difficult to find a good model
without using under-sampling. Lastly, RF outperforms
both DT and LR, as it is the model whit maximum
savings.

5 Evaluation on a different application

Since the contract with the card processing company,
which provided the dataset for this study, forbids
the publication of the database and there is no pub-
licly available credit card fraud dataset, a comparable
dataset was used in order to allow reproducibility of the
results and test the consistency of them across appli-
cations. In particular, a direct marketing dataset [13]
available on the UCI machine learning repository [1], is
used.

The dataset contains 45,000 clients of a Portuguese
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Table 4: Results of the different algorithms

Brier score precision recall F1−Score Cost
RF-u 0.07957046 0.0183 0.8804 0.0359 426,550
RF-u-BMR 0.07957046 0.0049 0.8613 0.0098 1,481,011
RF-u-cal br-BMR 0.00217812 0.1329 0.2737 0.1788 145,676
RF-u-cal ROCCH-BMR 0.00189893 0.0851 0.4253 0.1420 132,920
RF-t 0.00167922 0.7427 0.1197 0.2061 188,167
RF-t-BMR 0.00167922 0.0903 0.4727 0.1516 119,789
RF-t-cal ROCCH-BMR 0.00167826 0.1337 0.4419 0.2052 116,180
DT-u 0.15007769 0.0112 0.8232 0.0220 654,782
DT-u-BMR 0.15007769 0.0119 0.7427 0.0235 557,417
DT-u-cal br-BMR 0.15007769 0.0119 0.7427 0.0235 557,417
DT-u-cal ROCCH-BMR 0.00203345 0.0139 0.0249 0.0178 195,449
DT-t 0.00341506 0.2183 0.2571 0.2361 167,135
DT-t-BMR 0.00341506 0.2218 0.2258 0.2286 166,707
DT-t-cal ROCCH-BMR 0.00193991 0.2036 0.2351 0.2139 166,246
LR-u 0.10437865 0.0122 0.8579 0.0241 609,944
LR-u-BMR 0.10437865 0.0050 0.8579 0.0100 1,437,617
LR-u-cal br-BMR 0.00519054 0.0414 0.2712 0.0718 173,291
LR-u-cal ROCCH-BMR 0.00200200 0.0363 0.2452 0.0632 169,210
LR-t 0.00203165 0.2097 0.0154 0.0287 203,659
LR-t-BMR 0.00203165 0.1090 0.1149 0.1119 179,199
LR-t-cal ROCCH-BMR 0.00197370 0.1177 0.1682 0.1384 173,739

Table 5: Cost matrix of the direct marketing dataset

True Class (yi)
Accept Decline

Predicted Accept Ca Ca

Class (pi) Decline Inti 0

bank who were contacted by phone between March
2008 and October 2010 and received an offer to open a
long-term deposit account with attractive interest rates.
The dataset contains features such as age, job, marital
status, education, average yearly balance and current
loan status and the label indicating whether or not the
client accepted the offer.

Similarly, as in credit card fraud the direct market-
ing problem is also cost sensitive, since in both there
are different costs of false positives and false negatives.
Specifically, in direct marketing, false positives have the
cost of contacting the client, and false negatives have
the cost due to the loss of income by failing to contact
a client that otherwise would have opened a long-term
deposit. Given the previous information, a cost matrix
that collects the different costs is constructed, as shown
in Table 5, where Ca is the administrative cost of con-
tacting the client, as is credit card fraud, and Inti is
the expected income when a client opens a long-term
deposit. This last term is defined as the long-term de-
posit amount times the interest rate spread1.

In order to estimate Inti, first the long-term deposit
amount is assumed to be a 20% of the average yearly
balance, and lastly, the interest rate spread is estimated
to be 2.463333%, which is the average between 2008 and
2010 of the retail banking sector in Portugal as reported
by the Portuguese central bank. Given that, the Inti
is equal to (balance ∗ 20%) ∗ 2.463333%. In a similar
way as in credit card fraud, using the cost matrix a cost
measure is constructed as the sum of all individual costs:

m∑
i=1

yi (piCa + (1− pi)Inti) + (1− yi)piCa,(5.4)

where pi is the predicted label and yi is the ground
truth. Subsequently, the dataset is split in training,
under-sampling, validation and test. Relevant informa-
tion of the datasets is shown in Table 6.

Afterwards, the different models are calculated and
evaluated. First a DT, LR and RF are calculated,
using both the under-sampled and the training datasets.
Next, a Bayes minimum risk decision using the cost
matrix is created, and an offer is classified as accepted
if the following condition holds true:

CaP (pf |x) + CaP (pl|x) ≤ AmtiP (pf |x),(5.5)

and not accepted otherwise. Finally, the probabilities
are calibrated using the methods described in Section 2,

1Interest rate spread is the difference between the effective
lending rate and the cost of funds.
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(a) Comparison of the RF trained with the under-
sampled and full training datasets.

(b) Comparison of the calibration of probabilities
methods.

Figure 5: Comparison between the estimated probability and the actual fraud rate of the different models on
the direct marketing dataset. It is show that the initial probabilities are not calibrated. Nevertheless, when the
cal ROCCH method is used, the new probabilities look much more calibrated than the initial ones.

Table 6: Description of datasets of the direct marketing
dataset

Database No Trx Accept Int
Total 47,562 12.56% 394,211
Train 19,119 12.64% 156,676

Undersampled 4,819 50.17% 42,443
Validation 11,809 12.78% 97,498

Test 11,815 12.23% 97,594

and a BMR model using the calibrated probabilities is
applied.

On Figure 5a, probabilities estimated with the RF
model with under-sampling and with the full training
dataset are shown. It can be seen that the RF-t
model is better calibrated than the RF-u, which as
previously described, is expected since the second one
is trained with an under-sampled dataset. However,
neither of the probabilities are well calibrated. In
order to obtain calibrated probabilities the methods
described in Section 2 are applied. On Figure 5b, it
can be seen that when using the cal ROCCH on the
RF-u and RF-t datasets, the probabilities are better
calibrated compared against RF-u and RF-t, and the
cal br method. However, it is interesting that when
measured by the Brier score, as shown in Table 7, the
cal br method is the better one. This can be explained
by the fact that the population is concentrated on lower
probabilities in which the cal br is well adjusted.

Finally, it is interesting that the best model selected
by F1-Score is not the one that has the lower cost,
and the reason for that is that this metric is not cost

sensitive and assumes a constant false negative cost,
which as explained before is not the case in the direct
marketing problem. Overall, similar results are found
as in credit card fraud, in which when the probabilities
are calibrated either using cal br or cal ROCCH, better
results measured by cost are found. Lastly, the best
model measured by cost is the LR-u-cal ROCCH-BMR.
This model arises to a cost of 5,820 Euros on the test
dataset, which means savings of 49.26% against the
option of contacting every client.

6 Conclusions

In this paper the importance of using calibrated proba-
bilities for the process of decision making in the context
of credit card fraud detection and in general in cost sen-
sitive classification has been shown. The experiments
confirmed that using calibrated probabilities followed
by Bayes minimum risk significantly outperform using
just the raw probabilities with a fixed threshold or ap-
plying Bayes minimum risk with them, in terms of cost,
false positive rate and F1-Score.

References

[1] K. Bache and M. Lichman, UCI Machine Learning
Repository, School of Information and Computer Sci-
ence, University of California, (2013).

[2] Siddhartha Bhattacharyya, Sanjeev Jha,
Kurian Tharakunnel, and J. Christopher
Westland, Data mining for credit card fraud: A
comparative study, Decision Support Systems, 50
(2011), pp. 602–613.

684 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Table 7: Results using the direct marketing dataset
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RF-u-BMR 0.22327 0.1658 0.7466 0.2715 7,083
RF-u-cal br-BMR 0.10150 0.2001 0.4624 0.2793 5,901
RF-u-cal ROCCH-BMR 0.10541 0.2138 0.4893 0.2974 6,009
RF-t 0.10889 0.4551 0.2173 0.2942 13,164
RF-t-BMR 0.10889 0.2212 0.4539 0.2976 6,810
RF-t-cal ROCCH-BMR 0.10211 0.1950 0.4492 0.2720 5,969
DT-u 0.41138 0.1782 0.6089 0.2756 10,540
DT-u-BMR 0.41138 0.1897 0.5440 0.2815 9,793
DT-u-cal br-BMR 0.11023 0.1663 0.4077 0.2362 6,198
DT-u-cal ROCCH-BMR 0.41138 0.1897 0.5435 0.2810 9,793
DT-t 0.19995 0.2600 0.3003 0.2786 13,508
DT-t-BMR 0.19995 0.2693 0.2671 0.2683 13,299
DT-t-cal ROCCH-BMR 0.10907 0.1715 0.4089 0.2416 6,146
LR-u 0.20459 0.2385 0.6016 0.3416 8,331
LR-u-BMR 0.20459 0.1594 0.7598 0.2637 7,274
LR-u-cal br-BMR 0.09845 0.2113 0.4636 0.2903 5,820
LR-u-cal ROCCH-BMR 0.09863 0.2128 0.4478 0.2883 5,884
LR-t 0.09783 0.6641 0.182 0.2856 13,961
LR-t-BMR 0.09783 0.2087 0.4636 0.2878 5,884
LR-t-cal ROCCH-BMR 0.09796 0.2101 0.4602 0.2883 5,860
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